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Abstract

SVM training is a convex optimization problem which scales with the training set size
rather than the feature space dimension. While this is usually considered to be a desired
quality, in large scale problems it may cause training to be impractical. The common
techniques to handle this difficulty basically build a solution by solving a sequence of small
scale subproblems. Our current effort is concentrated on the rank of the kernel matrix as
a source for further enhancement of the training procedure. We first show that for a low
rank kernel matrix it is possible to design a better interior point method (IPM) in terms
of storage requirements as well as computational complexity. We then suggest an efficient
use of a known factorization technique to approximate a given kernel matrix by a low rank
matrix, which in turn will be used to feed the optimizer. Finally, we derive an upper bound
on the change in the objective function value based on the approximation error and the
number of active constraints (support vectors). This bound is general in the sense that it
holds regardless of the approximation method.
Keywords: Support Vector Machine, Interior Point Method, Cholesky Product Form,
Cholesky Factorization, Approximate Solution

1. Introduction

In the core of the SVM training problem lies a convex optimization problem which scales
with the training set size rather than the feature space dimension (Boser et al., 1992, Vapnik,
1995). While this is usually considered to be a desired quality, since it circumvents the well
known “curse of dimensionality”, in large scale problems (which are so common in real world
application such as speech, document classification, OCR, etc.) it may actually raise a new
concern: Although the training problem is, in principle, solvable, in practice it is intractable
by the conventional optimization techniques; e.g., each iteration of a general interior point
method (IPM) scales cubically with the size of the training set. Several approaches to
handle this problem have been suggested in the past few years which basically build a
solution by solving a sequence of small scale subproblems. To mention a few: stochastic
gradient ascent algorithms such as the Kernel-Adatron (Friess et al., 1998) and the SMO
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(Platt, 1999), which sequentially update one or two (resp.) Lagrange multipliers at every
training step, and active set methods, such as Chunking (Boser et al., 1992), Decomposition
(Osuna et al., 1997) and Shrinking (Joachims, 1999), which gradually build the (hopefully)
small set of active constraints by feeding a generic optimizer (usually an interior point
algorithm) with small scale subproblems.

Our current effort is concentrated on the numerical rank of the kernel matrix as a source
for further enhancement of the performance of the IPM. To this end we make the following
three key observations:

1. If the kernel matrix has low rank, then it is possible to design an efficient interior
point method that scales linearly with the size of data set.

2. If the kernel matrix has full rank (or almost so), it may be possible to approximate
it by a low rank positive semidefinite matrix (which in turn can be used to feed the
optimizer).

3. By using an approximation matrix instead of the original kernel matrix we obtain
a perturbed optimization problem, which requires less computational effort to solve.
In general, the optimal value of the objective function of the perturbed problem is
different than the optimal value of the original problem. However, the size of the
difference can be explicitely controlled by the quality of the approximation.

We assume that the positive semidefinite kernel matrix, Qn×n, is totally dense and too
large to handle, however its rank, k, is significantly smaller than n (“significantly” may be
defined according to the context). This means that Q can be represented as Q = V V T ,
where V is a matrix with k columns and n rows. The most expensive step at every iteration
of an IPM (applied to an SVM problem) is inverting or factorizing a matrix of the form
D + Q, where D is a diagonal (positive) matrix and Q is as described above. In general,
this operation requires O(n2) storage space and takes O(n3) arithmetic operations, but by
handling the linear algebra in a special way we can reduce the complexity to O(nk2) and
the storage to O(nk).

There are two possible approaches that achieve the same complexity. The first approach
is based on the Sherman-Morrison-Woodbury formula for a low rank update of an inverse of
a matrix. The Sherman-Morrison-Woodbury formula has been used widely in the context
of interior point methods for linear programming (Choi et al., 1990, Marxen, 1989). In that
context, however, the method often runs into numerical difficulties. The second approach is
based on product form Cholesky factorization and is described in Section 3. This method
is somewhat more expensive than the first: its workload is about twice and the storage
requirement is three times the storage needed for the first method. On the other hand, the
second method was shown to be numerically stable (experimentally and theoretically) in the
context of interior point methods for LP and quadratically constrained quadratic problems
(Goldfarb and Scheinberg, 1999). Some examples that we present in Section 3 suggest that
the first method may also have numerical difficulties in the context of our QP problems.
The second method works well numerically for all problems that we tried.

In many applications that we considered, a low rank representation Q = V V T may
not be available a priori (even if it exists). It may also happen that even though the rank
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of Q is close to (or equal to) n, Q can be approximated by a low rank symmetric posi-
tive semidefinite matrix Q̃. In this case one can apply incomplete Cholesky factorization
method with symmetric pivoting to obtain the desired representation of Q or its approxima-
tion. This procedure requires O(nk2) operations, where k is the number of nonzero pivots
in the procedure, which is the same as the rank of matrix Q or of its low rank approxima-
tion. The storage requirements reduces to O(nk). It is possible to trace the quality of the
approximation and apply an appropriate stopping criteria without an extra effort. This and
the overall complexity makes this method compare favorably with other recently suggested
approximation techniques (Smola and Schölkopf, 2000, Williams and Seeger, 2001).

Finally, the last observation leads us to derive a bound on the quality of the solution
obtained by solving the perturbed problem using a low rank approximation to Q. We show
that if the approximation error Q− Q̃ is bounded (in some sense) by ε, then the difference
between the optimal objective function values of the original problem and the perturbed
problems is bounded by lc2ε, where c is the penalty (cost) parameter of the training error
and l is the number of active points in the training set of the perturbed problem.

The rest of this paper is organized as follows: In the next section we present the convex
QP that we are interested in solving, and the interior point method that we use. In Section
3 we describe the Sherman-Morrison-Woodbury method and the product form Cholesky
factorization method, as means for low rank updates. Section 4 is devoted to issues related
to approximating the kernel matrix by a low-rank positive semidefinite matrix. We present
the algorithm to find such an approximation and a theorem in which we derive the above
mentioned bound. Experiments, which demonstrate the utility of the suggested method,
are presented in Section 5. We wrap things up in Section 6 with some concluding remarks
and leading directions for further study.

1.1 Notation

In general we denote scalars and vectors in lower case letters (we make an explicit distinction
when it is not clear from the context), and we use upper case letters to denote matrices.
We use subscript indices to indicate elements of a vector or a matrix and we use superscript
to label a whole matrix of a vector with an index.

The description in this paper follows the traditional notation used in the optimization
literature, which is slightly different from the one used in most SVM papers. The main
difference is in the identification of the primal and dual problems (which switch roles) and
the convention used to denote the unknowns with x, y, while in the SVM literature x and
y are used to denote the input vectors and their labels, resp. Hence, the SVM training
problem with 1-norm soft margin is

minξ,w,b
1
2
〈w,w〉+ c

n∑
i=1

ξi

(SVM) s.t. ai (〈w, vi〉+ b) ≥ 1− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n

where labeled examples are pairs of the form (v, a) such that v is a finite or infinite dimension
feature vector, a ∈ {−1,+1} is a label, and 〈·, ·〉 is an inner product. We often use Q as a
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shorthand for the labeled kernel matrix, i.e.

Qi,j = aiajK (vi, vj)

where K (·, ·) is a (Mercer) kernel function representing dot-products in the feature (RKHS)
space.

We will use an equivalent form of the above problem (with somewhat different notation)
which we will refer to as the dual problem (see problem (D) in the next section). The
dual of the (SVM) problem is thus called the primal problem (see problem (P ) in the next
section).

2. An Interior Point Method

We consider the following convex quadratic programming problem.

minx
1
2
x

T
Qx− e

T
x

(P ) s.t. a
T
x = 0,

0 ≤ x ≤ c,

where x ∈ Rn is the vector of primal variables, e is the vector of all 1’s of length n and a
is a vector of labels, 1’s and −1’s. c is the penalty parameter associated with the training
error. In general it may be desirable to use different penalty parameters for different data
points. In this case c should be treated as an n-dimensional vector. However, for the sake
of simplicity we assume that c is a positive scalar. All our analysis and results extend easily
to the more general case. Similarly, one might want to solve a problem with a slightly more
general objective function 1

2x
T
Qx+q

T
x, where q is some n-dimensional vector (e.g., a small

scaled optimization problem arising within a chunking-like meta algorithms). Our analysis
and results extend easily to this case as well.

The dual to the above problem is

maxy,s −1
2
x

T
Qx− c

n∑
i=1

ξi

(D) s.t. −Qx+ ay + s− ξ = −e,

s ≥ 0, ξ ≥ 0,

Here y is the scalar dual variable (it is equal to the negative bias) and s and ξ are the
n-dimensional vectors of dual variables.

Both (P ) and (D) have finite optimal solutions and any optimal primal-dual pair of
solutions satisfies the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality con-
ditions:

Xs = 0,
(C −X)ξ = 0

246



www.manaraa.com

Efficient SVM Training Using Low-Rank Kernel Representations

a
T
x = 0,

−Qx+ ay + s− ξ = −e,

0 ≤ x ≤ c, s ≥ 0, ξ ≥ 0.

By X (S, C − X) we denote the diagonal matrix whose diagonal entries are the elements
of the vector x (s, c− x). For optimality conditions of QP and details of applying IPMs to
QP (see Wright, 1997) and references therein.

The perturbed KKT optimality conditions

Xs = σµe,

(C −X)ξ = σµe

(CPµ) a
T
x = 0,

−Qx+ ay + s− ξ = −e,

0 ≤ x ≤ c, s ≥ 0, ξ ≥ 0

have a unique solution for any positive values of the parameter µ and σ. The trajectory
of solutions to the above system of equations for all values of µ ∈ (0,∞) with some fixed
positive value of σ is called the central path. The central path converges to an optimal
solution. A path-following primal-dual interior point method tries to follow the central
path towards the optimal solution by iteratively approximating solutions on the path by
applying the Newton method to the above system of nonlinear equations, while reducing
the value of parameter µ on each iteration.

Any typical interior point method solves a linearization of the above system of nonlinear
equations. We use the so-called Mehrotra predictor-corrector algorithm (Mehrotra, 1992),
which is considered to be one of the most efficient in practice, however the ideas presented in
Section 3 on reducing the per-iteration complexity apply to any other interior point method.
At every iteration there are two basic steps - the predictor step and the corrector step. The
idea behind this algorithm is to start with “predicting” the best reduction in the duality
gap, by evaluating a step directly towards the optimality. Such step, however, is not taken,
since it may ruin the “centrality” of the iterates. A corrector step is computed instead. The
corrector step enforces the centrality and also takes into account the approximate curvature
of the central path predicted by the predictor step.

Predictor step is a Newton step towards the solution of the system with σ = 0 (which
is the same as the system of the KKT conditions). Then, using this step, a value for σ is
chosen and a better step (corrector step) towards solution of the above system with this
value of σ is taken.

For the predictor step we compute (∆x,∆y,∆s,∆ξ), satisfying



−Q a I −I

a
T

0 0 0
S 0 X 0
−Ξ 0 0 (C −X)







∆x
∆y
∆s
∆ξ


 =




rc

rb

−Xs
−(C −X)ξ




where rb = −a
T
x, rc = −e + Qx − ay − s + ξ. If the current solution is primal and dual

feasible, then rb and rc are zero (within the numerical accuracy).

247



www.manaraa.com

Fine and Scheinberg

By eliminating ∆s, ∆ξ and consequently ∆x from the system we obtain an expression
for ∆y: a

T
(Q + D)−1a∆y = r, where D = SX−1 + Ξ(C − X)−1 and r is a right hand

side that depends on (Q + D)−1 and other parameters of the system. Solving for ∆y we
substitute it back to find ∆x, ∆s and ∆ξ. The maximum possible step length is determined
by computing α ≤ 1 such that 0 ≤ x+ α∆x ≤ c, 0 ≤ s+ α∆s and 0 ≤ ξ + α∆ξ.

To compute the corrector step, we set dx = ∆x, ds = ∆s and dξ = ∆ξ and µ̂ =
(x + dx)

T
(s + ds) + (c − x − dx)

T
(ξ + dξ) (from the predictor step) and compute new

(∆x,∆y,∆s,∆ξ), satisfying




−Q a I −I

a
T

0 0 0
S 0 X 0
−Ξ 0 0 (C −X)







∆x
∆y
∆s
∆ξ


 =




rc

rb

σµ− dXds−Xs
σµ+ dXdξ − (C −X)ξ




where σ is defined by

σ =
(
µ̂

µ

)3

.

We solve this system similarly to the system for the predictor step, compute the largest
possible step (but actually take 99% of that step to avoid hitting the boundaries of the
feasible region or else the new solution would not be in the interior), and update the current
solution.

The stopping criteria is formed by checking the duality gap and the primal and dual
feasibility against a predetermined tolerance. If these conditions are still not met, we
compute a new value for the parameter µ and repeat the iteration. This algorithm converges
to an optimal solutions from any strictly interior starting point (a point that lies inside all
inequality constraints). In theory, it takes O(n ln(1/ε)) iterations to converge, where ε is
the relative accuracy. However, in practice, an interior point method rarely takes more than
50 iterations, regardless of the problem’s size.

The most time consuming operation on every step is obtaining a vector of the form
u = (Q+D)−1w (e.g., during the computation of the predictor step such operation is done
twice - once during computation of the right hand side vector r and once during computation
of a

T
(Q+D)−1a). Since Q+D is a dense n× n, symmetric positive definite matrix, then

in general obtaining the vector u requires O(n3) operations. Typically this can be done by
either computing the inverse or factorizing1 Q+D.

The main point of the next section is to show that if Q can be represented as Q = V V
T
,

where V is n×k matrix (where k << n), then vector u can be obtained in O(k2n) operations.

3. Low-rank updates

There are two methods which efficiently solve the system (D + V V
T
)u = w by taking into

consideration the special form of the matrix of the system (i.e., the fact that it is a diagonal
matrix plus a low-rank symmetric positive semidefinite matrix). Both of these methods
require O(nk) storage and O(nk2) arithmetic operations, where k is the number of columns

1. Note that since D and Q are the same for both the predictor and the corrector steps, we need to compute
the inverse or factorize D +Q only once per every iteration.
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in V . Thus, if k << n then the two methods provide significant savings in terms of workload
and storage.

The first method is somewhat cheaper than the second. Its workload is about half of
that of the second method and the storage requirement is one third of the storage of the
second method. On the other hand, the first method may experience numerical instability.

3.1 Sherman-Morrison-Woodbury update

We consider a classical method for a low-rank update of an inverse of a matrix. This update
is usually called the Sherman-Morrison-Woodbury (SMW) update or formula:

(D + V V
T
)−1 = D−1 −D−1V (I + V

T
D−1V )−1V

T
D−1.

Since we would like to avoid storing the matrix D + V V
T
, we also would like to avoid

storing its inverse. We can apply the above formula to solve the system (D + V V
T
)u = w

as follows:
u = D−1w −D−1V (I + V

T
D−1V )−1V

T
D−1w.

Hence, compute

z := D−1w

t : (I + V
T
D−1V )t = V

T
z

u := z −D−1V t.

The system in the second step is k × k symmetric positive definite and can be solved
by computing Cholesky factorization of (I + V

T
D−1V ). The work required to compute

such factorization is O(k3), which is small if k is small with respect to n. Computing
the matrix of that system takes nk2/2 + O(nk) multiplications (and the same number of
additions). The overall work, in terms of the number of multiplications, required to solve
(D + V V

T
)u = w is nk2/2 plus smaller order terms.

The Sherman-Morrison-Woodbury has been used widely in the context of interior point
methods for linear programming, (Choi et al., 1990, Marxen, 1989). In that context, how-
ever, the method often runs into numerical difficulties. There are few modifications of the
method that have been proposed to deal with the numerical instability (Andersen, 1996,
Scheinberg and Wright, 2000). However, these modifications do not always help, and they
increase the computational cost.

It is not easy to point out rigorously the situations for which the SMW formula is
numerically unstable. The intuition suggests that it happens when matrix D+V V

T
or just

D is not well conditioned. Consider the following small example:

Example 1 Let

D =
[

ε2

1

]
and V =

[
1

−1

]
.

Then assuming that ε2 is smaller than the relative machine precision - i.e., 1±ε2 is computed
as 1 - we have that
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D + V V
T ≈

[
1 −1

−1 2

]
. (1)

Now consider solving (D + V V
T
)u = w, where w =

(
w1

w2

)
and w1 and w2 are Θ(1).

Clearly

u ≈
(

2w1 + w2

w1 + w2

)
. (2)

Let us apply the Sherman-Morrison-Woodbury formula to this example.

z =
(

w1
ε2

w2

)

(V
T
D−1V + I)t = (2 +

1
ε2

)t and V
T
z =

w1

ε2
− w2.

Because of round-off errors V
T
D−1V + I is computed as 1/ε2 and V

T
z as w1/ε

2. Hence
t = w1,

u = z −D−1V t =
(

w1
ε2

− w1
ε2

w2 + w1

)
=

(
0

w2 + w1

)
.

Clearly, the computed solution is not even close to the approximately correct solution (2).

A tuation similar to the above example happens often in linear programming. For our QP
problems such a situation is less natural, but still possible. The diagonal elements of D are
si/xi+ξi/(c−xi). By complementarity, as µ approaches zero, either si → 0 and xi → x∗

i > 0
or xi → 0 and si → s∗i > 0 (analogously, either ξi → 0 and xi → x∗

i < c or xi → c and
ξi → ξ∗i > 0). Moreover, whenever a variable converges to zero, it converges with the same
rate as the parameter µ. Thus, whenever si and ξi both converge to zero (which happens
for the points that are in the active optimal set), then Di converges to zero with the same
rate as µ. Otherwise, Di converges to infinity with the same rate as 1/µ. If µ = 10−8, then
some elements of D are of the order 10−8 and the others are of the order 108. If we scale D
and Q by 10−8 then D looks similar to the diagonal matrix in the example; i.e., some of the
elements are of the order of 1 and some are of the order of 10−16 (which often is the order of
the machine precisions). To have matrix Q and V consistent with the example, we need the
elements of scaled matrix 10−8Q to be of the order of 1. This will happen if the elements of
V , e.g. the data points, are of the order 104. In section 5 we briefly discuss some examples
of practical SVM problems for which our implementation of the interior point method with
the SMW update failed to converge.

In the next subsection we present an alternative method, which avoids many of the
numerical difficulties of the SMW update.

3.2 Product-Form Cholesky Factorization

An alternative efficient method for solving the system (D + V V
T
)u = w is based on a

low rank update of the Cholesky factorization of the matrix, rather than using low rank
updates to the inverse of the matrix. This is the reason for good numerical properties of
this approach. We will use a, so called, product form Cholesky factorization of D + V V

T
.
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Here a Cholesky factorization of a symmetric positive semidefinite matrix M ∈ Rn×n is
defined as M = LΛL

T
, where L is a lower triangular matrix with ones on the diagonal, and

Λ is a nonnegative diagonal matrix. A product form Cholesky factorization, in general, is
of the form L̃1L̃2 . . . L̃kΛ̃k(L̃k)

T
. . . (L̃2)

T
(L̃1)

T
, where each L̃i is a lower triangular matrix

and Λ̃k is a nonnegative diagonal matrix.
To solve a system of linear equations Mu = w, one has to solve the following sequence

of linear systems: L̃1u1 = w, L̃2u2 = u1, . . . , L̃kuk = uk−1, (L̃k)
T
uk+1 = (Λk)−1uk, . . . ,

(L̃1)
T
u = u2k−1. Each such system has a lower triangular or an upper triangular matrix,

and, in a general dense case, solving each such system takes O(n2) operations. However, if
each L̃i has a special structure (such as we will see below) then solving each system takes
only O(n) operations.

Let us assume that we have a Cholesky factorization of a matrix M : M = LΛL
T
. We

would like to obtain a product form factorization of M + vv
T
, where v ∈ Rn is a vector

(hence, vv
T

is a rank-one n× n matrix):

LΛL
T
+ vv

T
= L(Λ + pp

T
)L

T
= LL̃Λ̃L̃

T
L

T
,

where p is the solution of the equations Lp = v and L̃Λ̃L̃
T

is the Cholesky factorization of
Λ + pp

T
.

L̃ has a special form

L̃ =




1
p2β1 1
p3β1 p3β2 1
...

...
...

. . .
pn−1β1 pn−1β2 pn−2β3 · · · 1
pnβ1 pnβ2 pnβ3 · · · pnβn−1 1



, (3)

where β ∈ Rn and Λ̃ = diag{λ̃1, . . . , λ̃n} can be computed from the following recurrence
relations:

t0 := 1,
for j = 1, 2, . . . , n

tj := tj−1 + p2j/λj ,

λ̃j := λjtj/tj−1,

βj := pj/(λjtj).

Various versions of this method for updating Cholesky factorization by a rank-one term
were proposed by Bennet (1965), Fletcher and Powell (1974) and Gill et al. (1975).

If we allow some λj to be zero, then it is easy to verify that the above recurrence relations
become:

It is often important for the purpose of numerical stability to consider λj as equal to
zero, even if it is not precisely zero, but is very small (relatively to the other elements of
Λ). The above recursions can be used (with slight modifications) in the approximate sense
as well.

251



www.manaraa.com

Fine and Scheinberg

t0 := 1,
for j = 1, 2, . . . , n

if tj−1 �= ∞
if λj �= 0

tj := tj−1 + p2j/λj ,

λ̃j := λjtj/tj−1,

βj := pj/(λjtj).
else

if pj �= 0
tj := ∞
λ̃j := p2j/tj−1,

βj := 1/pj .

else

tj := tj−1

λ̃j := 0
βj := 0

else

tj := ∞
λ̃j := λj ,

βj := 0.

Figure 1: Rank-One update for Product-Form Cholesky Factorization

Now assume that we have a factorization LΛL
T

and we want to obtain a product form
factorization of LΛL

T
+v1(v1)

T
+v2(v2)

T
+ . . .+vk(vk)

T
. By repeating the above procedure

k times, once for each rank-one term vi(vi)
T
, we can obtain the product from Cholesky

factorization LL̃1L̃2 . . . , L̃kΛ̃k(L̃k)
T
. . . (L̃2)

T
(L̃1)

T
L

T
from the following:

Procedure 1.

1. Set Λ̃0 := Λ,

2. For i = 1, . . . , k

(i) Solve Lq0,i = vi for q0,i;

(ii) For j = 1, . . . , i− 1, solve L̃jqj,i = qj−1,i for qj,i;

(iii) Set p := qi−1,i; compute β and Λ̃ by recurrence relations in Fig. 1;

(iv) Store pi := p and βi := β; replace Λ̃i−1 by Λ̃i.
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In the case of our QP problems, we need to compute product form Cholesky factorization
of a matrix M = D+V V

T
, where D is a diagonal matrix inRn×n, V is a rectangular matrix

in Rn×k (assuming k << n), and V V
T

=
∑k

i=1 v
i(vi)

T
, where vi is the i-th column of V .

Thus, we can apply the above Procedure 1 by setting initial Λ to equal D and L to In, an
n× n identity matrix.

To store information about the product form Cholesky factorization of (D + V V
T
) we

need to store the matrix V , the diagonal elements of Λk, k vectors pi and k vectors βi,
i = 1, . . . k. Overall, our memory requirement for the factorization is 3kn plus smaller order
terms.

To compute the vectors pi and βi, i = 1, . . . , k, we need to solve (k−1)(k−2)/2 systems
of the form L̃q = r (by L̃, without an index, we mean any matrix of the form of Eq. (3)).
Due to the special structure of L̃ such solution can be obtained by the following procedure:

Procedure 2.
Given p, β and r;

1. Set q := r and σ := q1β1;

2. For j = 2, . . . , n

Set qj := qj − pjσ,

σ := σ + qjβj

This procedure requires 2n multiplications (and the same number of additions). Recur-
sions in Fig. 1 require O(n) operations for each i = 1, . . . , k. Hence, overall, the computation
of the product from Cholesky factorization of D + V V

T
requires k2n ( plus smaller order

term) multiplications.
Clearly, solving the system of equations of the form L̃

T
q = r, and performing matrix

multiplication q = L̃r or q = L̃
T
r each can be done by a procedure which takes into account

the special structure of L̃, similarly to Procedure 2, and requires O(n) operations. Thus,
once the factorization of D + V V

T
is computed, solving (D + V V

T
)u = w requires only

O(kn) operations. The overall complexity in terms of the number of multiplications is then
k2n plus smaller order term. This is about twice as much as the complexity of solving this
system using the SMW update. However, if k << n this complexity is still a very significant
improvement over O(n3) operations required to solve (D + V V

T
)u = w directly.

The product form Cholesky factorization method is numerically more stable than the
SMW method both in theory and in practice. First, it is easy to check that it produces
a correct result when applied to the small example in the previous subsection. Second, in
Section 5 we show some examples of QP for which the implementation of an interior point
method using the product form Cholesky factorization works well, while the implementa-
tion of the same interior point method with SMW update fails numerically. Finally, in
Goldfarb and Scheinberg (1999) it is shown that the product form Cholesky factorization is
numerically stable when used in the context of interior point method for linear programming
(under the assumption that the initial data is well conditioned). This result is supported
by extensive computational evidence. The case of QP for SVM is somewhat different from
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the case of linear programming. The proof of numerical stability does not apply directly,
and extending it is tedious and beyond interest of this paper; however, similar intuition
applies. Computational experiments show that the product form Cholesky factorization
method avoids numerical difficulties even when the initial data is not well conditioned.

4. Approximating the Kernel Matrix

It is often the case that the exact low-rank representation of the kernel matrix Q = V V
T

is not given, or even does not exist, i.e. the rank of Q is large. In these cases we may
hope that Q can at least be approximated2 by a low rank matrix Q̃. However, finding a
good approximation while keeping its rank low is not trivial. In this section we address the
following problem: given a symmetric positive semidefinite matrix, Q, construct a matrix
Q̃ such that its rank k and the bound on the error ∆Q = Q− Q̃ are acceptably small.

Recently, Smola and Schölkopf (2000) suggested a method for approximating the data set
in the feature space by a set in a low-dimensional subspace. The authors suggested to select
(via random sampling) a small subset of data points to form the basis of the approximating
subspace3 . All other data points are then approximated by linear combinations of the
elements of the basis. The basis is build iteratively, each new candidate element is chosen
by a greedy method to reduce the bound on the approximation error ∆Q = Q− Q̃ as much
as possible. The authors use the value tr(∆Q) as the bound on the norm of ∆Q, and hence,
as a stopping criteria: the algorithm stops when tr(∆Q) is below some tolerance, say εtol.

Let us assume that k points are already in the basis. To compute the reduction of the
approximation bound for each of the remaining n−k points extraO(nk(n−k)) operations are
required. This is clearly too expensive. The authors suggest at each iteration to randomly
select N candidates for the basis and apply their greedy approach only to those candidates.
Thus, the overall complexity is O(Nnk2).

Here we present a way of constructing Q̃ by directly approximating the Cholesky factor-
ization of Q. The proposed algorithm has complexity O(nk2) and takes the full advantage
of the greedy approach for the best reduction in the approximation bound tr(∆Q).

Any positive definite matrix Q can be represented by its Cholesky factorization Q =
GG

T
, where G is a lower triangular matrix4 (see Golub and Van Loan, 1996, Ch. 4). If

Q is positive semidefinite and singular, then it is still possible to compute an “incomplete”
Cholesky factorization GG

T
, where some columns of G are zero. Such procedure requires

O(k2n) operations, where k is the number of nonzero pivots in the procedure, which is
the same as the rank of matrix Q. This procedure can also be applied to almost singular
matrices by skipping pivots that are below a certain threshold (see Golub and Van Loan,
1996). If the eigenvalues of Q are distinctly separated into a group of very small eigenvalues
and relatively large eigenvalues then by choosing an appropriate value of the threshold
such procedure will produce both: very small numerical error and a good approximation

2. Indeed in the context of SVM it was already been noted that typically Q has rapidly decaying eigen-
values (Williamson et al., 1998, Smola and Schölkopf, 2000) although there exist kernels for which their
eigenspectrum is flat (Oliver et al., 2000).

3. Also see Williams and Seeger (2001) for another random sampling technique for low rank approximation.
4. This is the traditional definition of Cholesky factorization. It relates to the definition presented at Section

3, Q = LΛL
T

, by setting G = LΛ1/2.
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(see Wright, 1996). If, however, the eigenvalues of Q have a more complicated structure
(varying from very small to relatively large), then a symmetric permutation of rows and
columns of Q may be necessary during the Cholesky factorization procedure to stabilize the
computations and guarantee a good approximation. Symmetric permutations (sometimes
referred to as “symmetric pivoting”, cf. 4.2.9 of Golub and Van Loan 1996) are also crucial
in case when one is trying to find the best possible approximation while keeping the rank
of the approximating matrix below a prescribed bound. Figure 2 present an algorithm
which computes an approximation Q̃ = GG

T
of Q using incomplete Cholesky factorization

with symmetric permutations. Note that this procedure generates the Cholesky triangle G
column by column, while keeping in memory only the diagonal elements of Q. All other
entries of Q are needed only once and thus can be computed on demand. Hence it is easy to
derive a “kernelized” version of the suggested procedure, assuming an access to the input
vectors and the kernel function.

for i = 1 : n
for j = i : n

Gjj := Qjj

for k = 1 : i− 1
Gjj := Gjj −GjkGjk

end

end

if
n∑

j=i

Gjj > εtol

findj∗ : Gj∗j∗ = max
j=i:n

Gjj

Gi:n,i := Qj∗:n,j∗

Gi,1:i ↔ Gj∗,1:i

for j = 1 : i− 1
Gi+1:n,i := Gi+1:n,i −Gi+1:n,jGi,j

end

Gii :=
√

Gii

Gi+1:n,i := Gi+1:n,i/Gii

else

k := i− 1
Stop

endif

end

Figure 2: Column-wise Cholesky Factorization with Symmetric Pivoting
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The computational complexity of this procedure is O(nk2), since the only extra work is
in computing diagonal elements Gjj , which requires O(nk) operations at each iteration. The
storage requirement is O(nk). Symmetric permutations provide a greedy way of building the
approximation of Q. After i iterations of the Cholesky factorization procedure the matrix
Gi = G1:n,1:i is such that Gi(Gi)

T
= Q̃i, where Q̃i is an approximation of Q subject to a

symmetric permutation of rows and columns. For simplicity, let us assume that the rows
and columns of Q are ordered “correctly” and no permutation is necessary (this assumption
does not affect our analysis). Let ∆Qi = Q − Q̃i. Let Gi

1:i be the matrix composed of the
first i rows of Gi and Gi

i+1:n in the matrix composed of the last n− i columns. Then

∆Qi =
[

0 0
0 Qi+1:n,i+1:n −Gi

i+1:n(G
i
1:i)

−1Q1:i,i+1:n

]
.

From the properties of Cholesky factorization, ∆Qi is positive semidefinite and it is easy to
see that after updating Gjj for all j = i+1, . . . , n at the i-th iteration,

∑n
j=i Gjj = tr∆Qi.

Thus, when the above algorithm stops (after k iteration), we have tr∆Q ≤ εtol.

4.1 Bound on the error in the optimal objective value

Consider the perturbed optimization problem (P̃ ), which is constructed by replacing the
kernel matrix Q by a low-rank approximation Q̃, i.e.

minx
1
2
x

T
Q̃x− e

T
x

(P̃ ) s.t. a
T
x = 0,

0 ≤ x ≤ c.

A natural question to ask is: How close is the solution of the perturbed problem to the
solution of the original problem.

Let x∗ denote an optimal solution of the original problem (P ) and let x̃∗ denote an
optimal solution of the perturbed problem (P̃ ). Also let f denote the objective function of
(P ), and f̃ be the objective function of P̃ . We would like to estimate |f(x∗)− f̃(x̃∗)|. The
feasible sets of P and P̃ are the same, hence a feasible solution of one problem is feasible
for the other.

From optimality of x̃∗ f̃(x̃∗) ≤ f̃(x∗) = f(x∗) + 1
2(x

∗)T
∆Qx∗. We know that ∆Q =

Q− Q̃ is positive semidefinite, thus f̃(x̃∗) ≤ f̃(x∗) ≤ f(x∗); i.e. optimal objective value of
the perturbed problem is always smaller than the optimal objective value of the original
problem5.

On the other hand, optimality of x∗ f(x∗) ≤ f(x̃∗), hence f(x∗) − f̃(x̃∗) ≤ f(x̃∗) −
f̃(x̃∗) = 1

2(x̃
∗)T

∆Qx̃∗ ≤ 1
2λ1(∆Q)||x̃∗||2 ≤ 1

2tr (Q − Q̃)||x̃∗||2. Let l be the number of
positive components of x̃∗. From the feasibility constraints 0 ≤ x ≤ c these components are
bounded from above by c. Let ∆Ql be the principal sub-matrix of ∆Q that corresponds to

5. Recall that our definition of the objective function is the negative of the typical objective function
definition used in SVM literature. Thus, for the more traditional objective function its optimal value for
the original problem is always smaller than the optimal value for the perturbed problem.

256



www.manaraa.com

Efficient SVM Training Using Low-Rank Kernel Representations

positive components of x̃∗. The above yields the bound

0 ≤ f(x∗)− f̃(x̃∗) ≤ 1
2
x(0)

T
∆Qx(0) ≤ c2lε

2
.

Hence we have the following theorem:

Theorem 1 If (Q−Q̃) is positive semidefinite and tr (Q−Q̃) ≤ ε then the optimal objective
value of the original problem is larger than the optimal objective value of the perturbed
problem and their difference is bounded by c2lε/2, where l is the number of active constraints
(support vectors) in the perturbed problem.

The above error bound does not require approximation matrix Q̃ to be obtained by
Cholesky factorization with permutations. Theorem 1 holds for any Q̃ such that Q− Q̃ is
positive semidefinite and it’s trace is bounded by ε. If Q − Q̃ is not positive semidefinite,
then it is still possible to provide a bound on the change in the optimal value function
through a bound on the norm of ∆Q (see Fine and Scheinberg 2001 for more details).

5. Experiments

In this section we compare performances of the suggested method to state-of-the-art SVM
training procedures, construct a simple toy example to demonstrate the numerical instabil-
ity of the Sherman-Morrison-Woodbury update, and examined the impact of approximating
the SVM solution from both the optimization problem and the classification problem per-
spectives.

5.1 Cholesky Product Form QP vs. SMO

We’ve modeled 150 different Speaker Id binary problems6, in the following way: For each
speaker we trained a mixture of 4 Gaussians, 25 dimensions7, diagonal covariance. We
then applied Fisher kernel methodology (Jaakkola and Haussler, 1999), which resulted in
transforming the original data vectors to a 204 dimensional space. We further applied
linear normalization transformation to each dimension to balance the transformed vectors.
This caused the transformed vectors to be fully dense. The size of the training set in a
typical problem ranges from 6500 to 7000 vectors, roughly equally divided to positive and
negative example. We chose a dot-product kernel and compared our technique with the
SMO algorithm to find a maximal margin linear separator. Our choice was motivated by
former evidences which support the claim that most of the work in separating the positive
and negative points is carried out through the transformation represented by the Fisher
kernel. In the current setting the choice of a dot-product kernel served another purpose -
to obtain results of the SMO at the peek of its performance. To this end we used a special
designed variant of SMO which takes advantage of the fact that the kernel operations are
just dot-products (for further discussion see Platt, 1999). The comparison in CPU time
(depicted at Fig. 3) clearly favors our method. Note also that we have gained roughly a

6. This is part of a much larger multi-class Speaker ID system (Fine, Navrátil, and Gopinath, 2001).
7. 13 dimension cepstrum, augmented with first derivatives (‘delta’) and finally discarding the energy
coefficient.
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Figure 3: Cholesky Product Form QP vs. SMO

factor of 1100 in computational complexity and a factor of 33 in the storage requirements
over traditional IPMs.

5.2 Cholesky Product Form QP vs. SVMlight

We next turn to compare performances with Joachims’s SVMlight package, which is an
active set method applying the “shrinking” approach to select the subproblem to be solved
at each iteration (Joachims, 1999). As the QP subproblem solver we used loqo, which
is Smola’s implementation of an IPM solver provided with the SVMlight package. We
examined performances on a moderate size problem, the Abalone dataset from the UCI
Repository (Blake and Merz, 1998). Since, at this point, we were not interested in evaluating
generalization performances, we used the whole set (of size 4177) for training. The gender
encoding (male/female/infant) was mapped into {(1,0,0),(0,1,0),(0,0,1)}. Then data was
rescaled to lie in the [-1,1] interval. Similarly to the SMO experiment, we restricted ourselves
to dot-product kernel, while controlling the difficulty of the problem with the choice of the
penalty (cost) term c. We examined performances for 3 levels of difficulty, while gradually
increasing the allowed size of the subproblems the SVMlight algorithm. Note that there’s
no similar tuning to be done for our method since the whole QP problem fits into memory.
The results are depicted at Figure 4. This figure highlights the fact that SVMlight is quite
sensitive to the choice of the subproblem (chunk) size, as well as the difficulty of the overall
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Figure 4: Cholesky Product Form QP vs. SVMlight

problem, while our method (denoted “CholQP” it the figure) is stable for all levels of
difficulty.

5.3 Example of failure of the Sherman-Morrison-Woodbury update

We constructed a small example in the spirit of the one described in Section 3 to demon-
strate possible numerical instability of the Sherman-Morrison-Woodbury update. Figure 5
illustrates the data in the example. There are two crucial features: the set of active support
vectors is redundant (so the problem is degenerate) and the support vectors are scaled by
a large number (104). On this problem an interior point method using SMW update failed
to converge after achieving only 2 digits of accuracy. The same IPM with the product form
Cholesky update converged to 8 digits of accuracy.

To demonstrate that such failures can happen in practice we applied the Sherman-
Morrison-Woodbury version of the code to an approximate problem arising from Abalone
data set using polynomial kernel (as described in the next subsection). The algorithm
stalled after achieving only 5 digits of accuracy, whereas the product form Cholesky version
converged to 12 digits of accuracy.

5.4 Incomplete Cholesky Factorization (ICF)

To demonstrate the utility of the proposed ICF method and the impact of its approxi-
mation on the SVM solution, we conducted an experiment similar to the one described
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Figure 5: Example for the failure of SMW update

at (Smola and Schölkopf, 2000) on the Abalone data set8 using polynomial kernels, i.e.
k(x, y) = (〈x, y〉 + const)d. Thus we actually used the “kernelized” version of the factor-
ization algorithm (cf. Section 4). We examined the resulted factorization from two stand
points: Figure 6 demonstrates the impact of the low-rank approximation on the solution
of the optimization problem as a function of the rank, i.e. the optimal value of the objec-
tive function9 and the norm of the separating hyperplane. Figure 7 shows the impact of
the low-rank approximation from the classification performances perspective, i.e. training
and testing errors. Both figures are scaled with a graph which measures the quality of
the approximation in Frobenius norm (the square root of the sum of squares of the matrix
elements) with respect to the original kernel matrix.

6. Concluding Remarks

Our experiments show that an IPM (with the proposed approach to linear algebra) can be
more efficient than other state-of-the-art methods for QP problems arising in the course
of training support vector machines, if the kernel matrix has a low rank (compared to the
size of the data) or if it can be approximated by a low-rank positive semidefinite matrix.
We considered two possible ways of handling linear algebra. We showed that Sherman-
Morrison-Woodbury update may be numerically unstable. However, if accuracy is not a

8. The data set was preprocessed as described in Section 5.2, and we used the first 3000 points for training
and the remaining 1177 points for testing.

9. This is actually a “negative” plot of the optimal values (due to our definition of the objective function)
to ease the comparison with similar plots published in the SVM literature.
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Figure 6: Incomplete Cholesky Factorization for Poly Kernel (input dim = 10, poly degree
= 5) on the Abalone data set. The optimization problem perspective: optimal
value of the objective function and norm of the separating hyperplane. X axis is
the rank (note that the feature space dim ≈ 3000).

high priority one might prefer to use the SMW method over the product form Cholesky
factorization, since it is faster and requires less storage.

For massive data sets which do not fit the memory restrictions, an IPM may still be
the most efficient approach to solve smaller subproblems. This motivates an effort to em-
bed our approximation technique and QP solver in a Chunking/Shrinking meta algorithm.
Such a scheme is expected to enhance performance in terms of storage requirement and
computational complexity and, thus, it will enable to efficiently handle larger chunks.

Finally, if the approximation is not too rough, then the set of active constraints (Support
Vectors) may be identical to the set which correspond to the original optimization problem,
though their values should obviously differ (due to the approximation). Hence, one may
use the approximation problem just to identify the set of active constraints (assuming this
set is not too large), and then resolve the reduced problem which constructed solely by
the corresponding original (non approximated) SV, and thus obtain the optimal solution.
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Figure 7: Incomplete Cholesky Factorization for Poly Kernel (input dim = 10, poly degree
= 5) on the Abalone data set. The classification problem perspective: training
and testing errors. X axis is the rank (note that the feature space dim ≈ 3000).

Working out a bound for the approximation error that will ensure the identification of the
active set is a subject for future research.
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